Axial Leaded Low Rho PTC Resettable Fuse: FSL-N Series

1. Summary

(a) RoHS Compliant & Halogen Free

(b) Applications: Laptop Computer, Mobile phone battery packs, Rechargeable battery packs, Lithium cell and battery packs

(c) Product Features: Low resistance, Solid state

(d) Operation Current: 1.4~7.0A (e) Maximum Voltage: 6VDC

(f) Temperature Range : -40°C to 85°C

2. Agency Recognition

File No. E211981 UL: C-UL: File No. E211981 TÜV: File No. R50004084

3. Electrical Characteristics (23°C)

Part Number	Hold Current	Trip Current	Rated Voltage	Maximum Current	Typical Power	Max Time	to Trip	Resistance Tolerance		
						Current	Time	RMIN	RMAX	R1MAX
	IH,A	IT,A	VMAX, VDC	IMAX, A	Pd, W	Α	Sec	Ohms	Ohms	Ohms
FSL140F-N	1.4	3.6	6	50	1.0	7.0	3.0	0.0100	0.0200	0.0350
FSL190F-N	1.9	4.9	6	50	1.0	9.5	3.0	0.0060	0.0140	0.0240
FSL250F-N	2.5	8.0	6	50	1.0	12.5	3.0	0.0060	0.0120	0.0200
FSL270F-N	2.7	8.1	6	50	1.0	13.5	2.0	0.0060	0.0120	0.0180
FSL310F-N	3.1	8.8	6	50	1.0	15.5	3.0	0.0040	0.0100	0.0160
FSL370F-N	3.7	9.0	6	50	1.0	18.5	5.0	0.0030	0.0080	0.0140
FSL450LF-N	4.5	9.5	6	50	1.0	22.5	3.0	0.0025	0.0055	0.0100
FSL500F-N	5.0	10.0	6	50	1.0	25.0	3.0	0.0015	0.0050	0.0090
FSL700F-N	7.0	14.0	6	50	1.0	25.0	3.0	0.0010	0.0045	0.0080

Iн=Hold current-maximum current at which the device will not trip at 23℃ still air.

I_T=Trip current-minimum current at which the device will always trip at 23°C still air.

V MAX=Maximum voltage device can withstand without damage at its rated current.

I MAX= Maximum fault current device can withstand without damage at rated voltage (V MAX). Pd=Maximum power dissipated from device when in tripped state in 23°C still air environment.

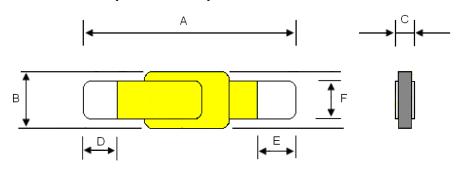
R_{MIN}=Minimum device resistance at 23°C

R_{MAX}=Maximum device resistance at 23°C

- 1) Maximum resistance of device at 23°C measured 1 hour, after tripping for all product series; 2) or after REFLOW soldering of 260°C for 20 ~ 40 seconds for all SMD series; 3) or after WAVE soldering of 260°C for less than 5 seconds for all DIP series.

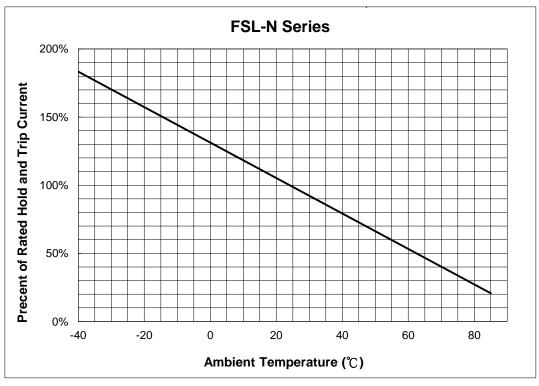
Special Note:

- In the event that TWO of the above three conditions were experienced once each, the acceptance criteria will become 1.3 times of R1_{MAX}.
- In the event that ALL of the above three conditions were experienced once each, the acceptance criteria will become 1.5 times of R₁MAX.


Physical specifications:

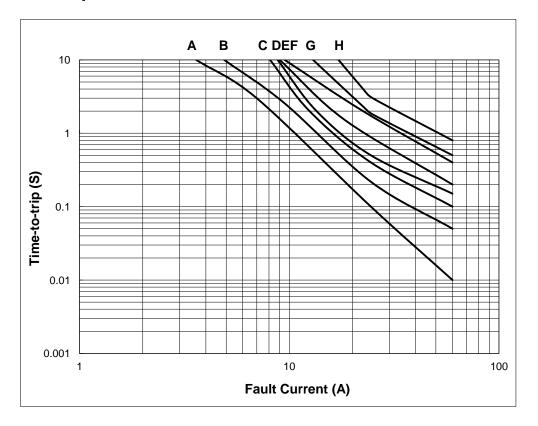
Lead material: 0.1 mm nominal thickness, guarter-hard nickel.

Insulating material: Epoxy.


NOTE: Specification subject to change without notice.

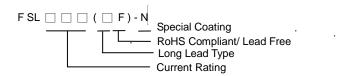
4. Production Dimensions (millimeter)

Part Number	Α		В		С		D		E		F	
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
FSL140F-N	9.20	10.80	3.15	3.45	0.55	1.10	2.15	3.25	2.15	3.25	2.20	2.40
FSL190F-N	9.20	10.80	3.15	3.45	0.55	1.10	2.15	3.25	2.15	3.25	2.20	2.40
FSL250F-N	9.20	10.80	3.15	3.45	0.55	1.10	2.15	3.25	2.15	3.25	2.20	2.40
FSL270F-N	9.20	10.80	3.15	3.45	0.55	1.10	2.15	3.25	2.15	3.25	2.20	2.40
FSL310F-N	9.20	10.80	3.15	3.45	0.55	1.10	2.15	3.25	2.15	3.25	2.20	2.40
FSL370F-N	9.20	10.80	3.15	3.45	0.55	1.10	2.15	3.25	2.15	3.25	2.20	2.40
FSL450LF-N	20.50	21.50	3.50	3.90	0.55	1.10	7.00	8.00	7.00	8.00	2.40	2.60
FSL500F-N	20.50	21.50	3.50	3.90	0.55	1.10	7.00	8.00	7.00	8.00	2.40	2.60
FSL700F-N	21.00	23.00	3.50	3.90	0.55	1.10	4.60	6.60	4.60	6.60	2.90	3.10


5. Thermal Derating Curve

NOTE: Specification subject to change without notice.

6. Typical Time-To-Trip at 23℃



7. Material Specification

Lead material: 0.1 mm nominal thickness, quarter-hard nickel Insulating material: Epoxy

8. Part Numbering and Marking System

Part Numbering System

Warning: -Operation beyond the specified maximum ratings or improper use may result in damage and possible electrical arcing and/or flame.

- -PPTC device are intended for occasional overcurrent protection. Application for repeated overcurrent condition and/or prolonged trip are not anticipated.
- Avoid contact of PPTC device with chemical solvent. Prolonged contact will damage the device performance.